Архив рубрики ‘ Nanotechnology against COVID19

Role of nanotechnology in the race to find a Covid-19 vaccine

Today I would like to acquaint readers of my blog with a summary of the data published on the site Nanowerk about the role of nanotechnology in the race for the Covid-19 vaccine.

Nicole Steinmetz, professor of nanoengineering at UC San Diego and corresponding author on the study, spoke with Nanowerk about the findings in this paper. Steinmetz believes “it is an exciting time for nanotechnology and nanoparticle delivery of nucleic acid-based vaccines and subunit vaccines are poised to make an impact.”

The COVID-19 pandemic has left the world reeling following its inception in Wuhan, China. While global efforts are being directed towards a vaccine, thus far none have passed the trial stage. Until humanity achieves herd immunity to this virus, either through exposure and infection or through inoculation, there can be little hope of our returning to our pre-COVID-19 life.

Fortunately, there are over two hundred academic laboratories and companies around the world searching for a vaccine, and the pace at which they are progressing is unprecedented. One nanotechnology formulation achieved clinical trials a month prior to other conventional approaches. However, due to the stiff regulatory requirements on vaccines to ensure safety, there remain various hurdles that companies must surmount in order to establish a viable vaccine.

Nanotechnological approaches have received a boost despite their lack of clinical trials. As an example, mRNA vaccines have been developing for thirty years but were not previously approved. Due to the adaptability of such technology, prior vaccine candidates can be repurposed using previously developed nanostructures.

Nanoparticles and viruses operate on the same scale, and thus there are various nanotechnological aides which are being used in the development of potential vaccines. Nanoparticles are capable of entering the cell through biological channels, and can deliver antigens there. Antigens are typically delivered via either lipid nanoparticles (LNPs), which encapsulate the antigens, or via other benign viruses including Ads.

Due to the scale of nanoparticles, they are capable of traveling in vivo differently than other molecules. The lymphatic system, which is critical in orchestrating immune responses, has typically proved challenging to access. However, with the advent of nanoparticles, previously inaccessible pathways have become accessible, with certain trial vaccines attempting to use these to transport antigens.

Besides delivering antigens themselves, nanoparticles can also be enlisted to provide adjuvants to cells. Adjuvants effectively catalyze the immune response, allowing the cell to more easily recognize and respond to antigens. Encapsulating both the antigen and adjuvant in the same envelope provides for better-targeted delivery and response from the cell.

The presence of adjuvants may also reduce the amount of antigen required to engender a response, and thus render a dose-sparing effect. This dose-sparing may drive the cost of immunization down, and render wide-spread inoculations more feasible. Without co-delivery of adjuvants and antigens, antigens are more likely to break down in the body. Читать запись полностью »

Nanostructured surface inactivates SARS-CoV-2 coronavirus within six hours

While the number of bacterial and viral infections has been steadily rising, the emergence of the novel Covid-19 pandemic has caused a surging demand for antimicrobial treatments that can keep surfaces clean, particularly in health care settings. However, all of these surfaces and coatings have been developed to combat bacteria but not to kill off viruses.

Quite surprisingly, so far the effect of nanostructured surfaces on viruses has never been investigated.

In new work reported in ACS Biomaterials Science & Engineering («Antiviral Nanostructured Surfaces Reduce the Viability of SARS-CoV-2»), researchers from the Centre for Biomedical Technologies at Queensland University of Technology have successfully produced durable antiviral surfaces that inactivate SARS-CoV-2 within 6 hours.

In contrast, on various non-nanostructured surfaces or smooth surfaces, the SARS-COV-2 virus remained viable for up to 48 hours.

«Our results provide evidence that surfaces that are structured with specific nanoscale surface features are effective in preventing SARS-CoV-2 and the subsequent environmental spread,» Jafar Hasan, the paper's first author, tells Nanowerk. «Such nanostructured surfaces can be used in hospital environments such as trolleys, bed-rails, door-knobs, etc. These surfaces can be extended to other industrial sectors and public infrastructure such as transportation, where fomites or contaminated surfaces are carriers for viral infections.»

This research has grown out of earlier work (ACS Biomaterials Science & Engineering, «Antiviral and Antibacterial Nanostructured Surfaces with Excellent Mechanical Properties for Hospital Applications») where the team, led by Prof. Prasad K.D.V. Yarlagadda, showed that nanoscale topography can kill and inactivate a wide range of bacteria and viruses. Читать запись полностью »

Combatting COVID-19 at the nano level

Today I bring to your attention a very recent report on the application of nanotechnology for the manufacture of masks against COVID-19. I want to share new interesting data with my readers, so I am giving a message completely without any changes. The message has a title “Combatting COVID-19 at the nano level”. It was published in the Nanowerk News.

Copper, a metal commonly used throughout history for its antibacterial properties, is being utilized by researchers at IUPUI’s Integrated Nanosystems Development Institute to solve a problem very relevant today: making reusable face masks safer and more comfortable for daily use.

“We wondered how we could use our existing technology to turn something used in ancient times, like copper, into protection against COVID-19,” said Mangilal Agarwal, director of the Integrated Nanosystems Development Institute and professor of mechanical and energy engineering. “Any virus sitting on the surface that comes in contact with copper will be killed because of the antiviral properties.”

Agarwal and Hamid Dalir, associate professor, are applying a patented technology developed at IUPUI to manufacture reusable face masks using copper, a metal often used in the production of high-touch objects like doorknobs and handles. Their goal is to improve filter performance by trapping and disabling airborne virus particles.

“These masks have copper oxide applied at the nano level and would offer ultimate protection against virus risks like COVID-19,” Agarwal said. “Some cloth masks allow the small airborne particles to pass through, but with our technology, it would be close to 100% proof that you have the capability incorporated in the mask to deactivate the virus and improve filter performance.”

The technology – initially developed at IUPUI to make composite materials cheaper, lighter and stronger using nanomaterials – could be used to coat household masks with a layer of fabric protection inlaid with copper nanoparticles that disable virus particles as they reach the surface. The general public would be able to wear a reusable mask that offers the same superior level of protection as masks worn by healthcare providers, such as N95 masks.

“To make any fabric into a mask or filter, we have to provide the nanostructure, and we can put that nanostructure on a roll-to-roll printing machine with the fibers at nanoscale,” Agarwal said. “We are using electrospinning, using the electric field to spray the nanofibers onto the fabric.”

Agarwal and Dalir disclosed their technology to the Indiana University Innovation and Commercialization Office, and are looking to commercialize it through their startup. They plan to work with local companies manufacturing COVID-19 supplies under the Defense Protection Act.

Beyond face masks, the technology can be applied to other methods for fighting COVID-19, such as HEPA filters found in HVAC systems. Without good filters, Agarwal said, airborne virus particles could circulate between indoor areas. By applying the copper material to the filters, there could be virus free air circulation in buildings and hospitals.

“Our technology is good for masks and filters because we are not changing the manufacturing process,” Dalir said. “We just get the rolls of the mask and filter, manufacture and enhance it with copper-coated fabric and then use it as it would be used conventionally.”

Their company, Multiscale Integrated Technology Solutions, was recently selected as one of five Hoosier startup winners of the Elevate Nexus Statewide Pitch Competition, a program designed to support Indiana startups.

“Elevate Nexus is being funded by a grant from the U.S. Economic Development Administration and the 21st Century Research and Technology Fund to help startups that have shown potential for commercialization to get connected with entrepreneurs to build on existing operational strategies," Dalir said. "What we're trying to do is raise the existing entrepreneurship support vehicles as well as attract investment in our startup at an earlier level so that we can have the opportunity to further grow and cultivate new investors as we de-risk our venture.”

The commercialization of their technology has the potential to greatly impact lives here in Indiana and around the world – providing a safe solution against the spread of COVID-19.