В Новосибирске создали самую быструю флешку в мире

В Институте физики полупроводников имени А.В. Ржанова Сибирского отделения РАН выяснили, что флеш-память с использованием мультиграфена по быстродействию и времени хранения информации может превосходить аналоги, основанные на других материалах. Об этом сообщается на сайте «Наука в Сибири».

В институте изучили применение мультиграфена (вещества из нескольких слоев графена) во флеш-памяти. Принцип ее действия основан на инжекции (впрыскивании) и хранении электрического заряда в запоминающей среде (мультиграфене). Помимо этого необходимыми компонентами такой флеш-памяти являются туннельный и блокирующий слои. Первый изготавливается из оксида кремния, второй, как правило, из диэлектрика с высоким значением диэлектрической проницаемости.

Эффективность флеш-памяти (время хранения заряда, быстродействие) в свою очередь зависит от величины работы выхода запоминающей среды — энергии, которая тратится на удаление электрона из вещества. Используемый мультиграфен обладает важной особенностью — у него большая работа выхода для электронов, около 5 электронвольт. Из-за этого на границе мультиграфена и оксида кремния величина потенциального барьера увеличена и составляет примерно 4 электронвольт. Именно этот эффект был взят в основу исследования. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Хиральность нанотрубок можно регулировать

Молекулы поверхностно-активного

вещества, адсорбированные на

поверхности одностенной

углеродной нанотрубки

 

При производстве нанотрубок в качестве конечного продукта получается смесь наноструктур с различной хиральностью, т.е. с различными электрическими свойствами. Но для формирования наноустройств необходимо выделять нанотрубки только одной хиральности. При помощи компьютерного моделирования исследователи из США доказали, что поверхностно-активные вещества могли бы помочь выделить нанотрубки с каким-то определенным набором свойств, т.е. с одной определенной хиральностью.

Одностенные углеродные нанотрубки можно представить как листы графена (одноатомного слоя углерода с гексагональным кристаллическим строением), свернутые в трубку диаметром около 1 нм. Относительная ориентация шестигранников, формирующих кристаллическую решетку стенки нанотрубки, и ее пространственной оси определяет такое свойство, как хиральность нанотрубок. В общем случае хиральностью объекта в физике называется отсутствие симметрии относительно зеркального отображения объекта. В случае с нанотрубками хиральность определяет электронные свойства, т.е., в конечном счете, позволяет отнести нанотрубку по своим свойствам к металлам или полупроводникам.

На сегодняшний день разработано множество способов получения нанотрубок. Но большинство из них позволяет выращивать нанотрубки «случайным» образом, т.е. не позволяет контролировать их хиральность на стадии производства. Благодаря высокой площади поверхности и свойствам транспорта электрического заряда одностенные углеродные нанотрубки идеальны для множества практических применений, таких как создание сверх-чувствительных миниатюрных датчиков или транзисторов. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

 

Схематическое изображение процесса уничтожения раковых

клеток при помощи облучения золотых нанотрубок лазерным излучением ближней ИК-области

Согласно последней работе ученых из Великобритании, нанотрубкииз золота  могут использоваться для эффективного фототермального уничтожения раковых клеток. Трубки, являющиеся по сути наночастицами золота с трубчатой структурой, также могут использоваться в качестве инструмента для доставки лекарственных средств или в роли нанозондов для медицинской визуализации пораженных областей с высоким разрешением.

Все живые клетки, в том числе раковые, могут быть уничтожены при помощи нагревания. В то время как некоторые раковые клетки могут быть устойчивы к химиотерапии, все они разрушаются при воздействии тепла, необходимо лишь обеспечить достаточно высокую температуру. Радиочастотная абляция и сфокусированное ультразвуковое излучение высокой интенсивности уже используются для удаления опухолей. В своей последней работе группа ученых из University of Leeds (Великобритания) также обнаружила, что в качестве альтернативы можно использовать фототермальное уничтожение клеток, в рамках которого задействуются золотые нанотрубки, облучаемые лазерным излучением из ближней инфракрасной области. Важно, что опубликованная работа – первый случай, когда поглощение света из ближней ИК-области золотыми наноструктурами применяется в биомедицине.

В опубликованной в журнале Advanced Functional Materials работе ученые отмечают, что им удалось контролировать длину золотых нанотрубок при их производстве. Таким образом, они производили наноструктуры, чьи размеры обеспечивают оптимальное поглощение света в ближней ИК области спектра электромагнитного излучения. Надо отметить, что этот диапазон имеет важное значение для биомедицины, поскольку биологические ткани хорошо поглощают подобное излучение. В результате при помощи одного импульса лазерного луча ученым удалось быстро увеличить температуру в непосредственной близости от нанотрубок (в процессе нагревались и сами нанотрубки), что позволило быстро и достаточно эффективно разрушить раковые клетки. Поскольку излучение из ближнего ИК-диапазона проникает в ткани на несколько сантиметров, при помощи такого теплового эффекта могут удаляться многие виды опухолей. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Исследователи из Массачусетского технологического института (MIT),  IBM и лаборатории реактивного движения  НАСА построили  массив детекторов света на фотонном кристалле, который может эффективно записывать отдельные фотоны. Такие устройства будут важными элементами будущих квантовых технологий, таких как квантовая криптография и оптические квантовые  компьютеры.

«Мы хотели бы создать фотонный квантовый процессор на чипе, а  однофотонные источники и детекторы являются важнейшими компонентами для такой микросхемы,» объясняет член команды Faraz Najafi в Массачусетском технологическом институте.

В то время как классические компьютеры хранят  и обрабатывают  информацию в «битах», которые могут иметь одно из двух состояний («0» или «1»), квантовый компьютер использует способность квантовых частиц  быть в «суперпозиции» двух или более состояний в одно и  то же время. "В то время как единичный  квантовый бит (кубит) может находиться в двух состояниях одновременно, два  кубитов могут  быть в четырех состояниях одновременно, и так далее», поясняет руководитель совместной команды  Dirk Englund  из Массачусетского технологического института. «Более того, число   состояний , которые занимаютcя одновременно в  квантовом компьютере растет экспоненциально с ростом числа кубитов в нем.»

“Обработка информации в квантовых приборах превосходит её в классических компьютерах  в определенных задачах, таких как моделирование процессов квантовой механики и  процессов в природе, взлом криптографических кодов”,  добавляет он. Еще одним важным аспектом  таких квантовых систем является то, что квантовые частицы могут также стать «запутанными». Переплетение позволяет частицам иметь  более тесные отношения, чем  позволяют законы классической механики ,и,  таким образом данные передаются мгновенно между запутанными состояниями частиц — независимо от того, как далеки они друг от друга. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Создан симбиоз графена и углеродных нанотрубок

                 Группа американских исследователей создала новый гибридный трехмерный материал, представляющий собой некое объединение графена и углеродных нанотрубок. Материал, имеющий чрезвычайно высокую площадь поверхности на единицу массы (более 2 тысяч квадратных метров на грамм), может быть использован для создания устройств накопления энергии или других наноэлектронных компонент с удивительными характеристиками.

Графен и углеродные нанотрубки обладают многими уникальными электронными и механическими свойствами, такими как высокая подвижность носителей электрического тока, высокая электро- и теплопроводность, прочность на разрыв и большая площадь поверхности, приходящаяся на единицу массы. Объединение двух подобных структур (двумерного графена и одномерных углеродных трубок) позволяет транслировать все эти характеристики для эксплуатации в трех измерениях, в частности, для создания устройств накопления энергии и развития других наноэлектронных технологий. Однако практика показывает, что не так просто соединить эти два материала вместе при помощи ковалентной связи. Графен и углеродные нанотрубки выращиваются на различных подложках. Для углеродных нанотрубок используется оксид алюминия и железа, а для графена – металлические катализаторы (например, никель или медь). Предыдущие попытки объединения этих двух структур приводили к тому, что нанотрубки были физически адсорбированы на поверхности графена, а не присоединены к ней при помощи ковалентной углеродной связи. Таким образом, структуру нельзя было назвать единой. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Создана новая легкая керамика на основе нанотрубок

Группа исследователей из США разработала новую структуру керамического материала, обладающую сверхнизкой плотностью, наряду с высокой прочностью и способностью поглощать механическую энергию. Также новый материал отличается способностью восстанавливать свою первоначальную форму после сжатия, при котором деформация превышает 50%. Предыдущие работы ученых уже продемонстрировали, что наноструктурированные керамические материалы прочнее и жестче, чем обычная объемная керамика. Однако хрупкость этих материалов до сих пор не позволяла широко их применять.

Группа ученых из Калифорнийского Технологического Института (California Institute of Technology)  (США) создала новый материал, собрав нанотрубки из окиси алюминия в объемную структуру, которая широко используется при реализации крупномасштабных строительных проектов.

Речь идет о связках нанотрубок в виде ферм, содержащих пять и более треугольных блоков. Для своей работы ученые выбрали структуру, состоящую из восьми треугольников, поскольку нанотрубки в решетке с такой геометрией при деформации испытывают по большей части растяжения и сжатия, а не изгибаются (есть несколько публикаций, описывающих процесс сжатия слоев подобной структуры при деформации, на которые ученые опирались при подготовке эксперимента).

Эксперимент проводился с конструкциями из алюминиевых нанотрубок с толщиной стенки от 5 до 60 нм и диаметром от 0,45 до 1,38 мкм. Ширина элементарной ячейки созданной ими решетки при этом варьировалась от 5 до 15 мкм. Эксперименты по сжатию конструкции проводились в инденторе для определения предела текучести и модуля Юнга под возвоздействием периодической нагрузки. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Наночип помогает выявить рак легкого

                                    Новое изобретение израильских и американских ученых способно диагностировать рак    легких по выдыхаемому воздуху на раннем этапе заболевания.  Устройство со   встроенным наночипом, анализирующее выдыхаемый воздух, выявляет наличие   опухолей легкого, их подтипы и стадии развития. Фото предоставлено Тель-Авивским университетом.

Как отмечают специалисты, точность поставленного диагноза весьма высока и позволяет начать лечение еще до того, как станет поздно.

Похожий на алкотестер прибор со встроенным наночипом «NaNose» анализирует выдыхаемый человеком воздух, идентифицируя вид опухоли и стадию ее развития. Данные разработки были представлены на последней конференции Американского общества клинической онкологии (ASCO), прошедшей в Чикаго, говорится в заметке, опубликованной на сайте medportal.ru. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс