Американские физики построили микрофлюидное устройство, которое целенаправленно отбирает из крови скопления раковых клеток с эффективностью на уровне 70 процентов.

По словам ученых, новое устройство позволит разобраться в механизме образования метастазов и поможет разработать лекарство, предотвращающее этот процесс. Статья опубликована в AIP Advances.

Около 90 процентов случаев смерти от рака связывают с развитием метастазов, то есть распространением раковых опухолей на новые органы. В основном образование метастазов связано с небольшими скоплениями раковых клеток, которые отрываются от существующих опухолей и перемещаются в новые органы вместе с кровью. Если бы врачи умели отлавливать и уничтожать такие сгустки, это бы замедлило процесс метастазирования и, возможно, спасло бы много жизней. К сожалению, свойства таких сгустков изучены плохо. Это затрудняет разработку фильтрующих устройств.

Прежде чем исследовать сгустки раковых клеток, их сначала нужно изолировать и выделить из крови. Проблема в том, что сделать это на практике очень сложно: большинство методов извлечения раковых клеток требуют предварительной обработки образца, разрушающей значительную часть нужных клеток. Более того, все такие методы могут работать только с небольшими объемами (порядка одного-двух миллилитров) и слабыми потоками жидкости (менее 20 микролитров в минуту). Поэтому для сбора большого количества раковых клеток требуется ждать довольно много времени. Это не только усложняет исследования раковых клеток, но и влияет на свойства клеток, долго дожидавшихся эксперимента. Создавать фильтрующее устройство для очистки крови на основе таких методов также бессмысленно.

Поэтому группа ученых под руководством Питера Терьете (Peter Teriete) разработала микрофлюидный прибор, который почти на порядок увеличивает скорость выделения сгустков раковых клеток из крови.

NanoNewsNet

AIP Advances.

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Российские химики из НИТУ «МИСиС» разработали новый гибридный катализатор для окисления угарного газа, состоящий из гексагонального нитрида бора и серебряных наночастиц. Этот материал позволяет добиться полной конверсии монооксида углерода всего при 194 градусах Цельсия.

Монооксид углерода (он же угарный газ) — один из наиболее вредных для человека газов, содержащихся в промышленных газовых выбросах. В частности, он образуется при сжигании топлива при работе двигателей внутреннего сгорания. Для избавления автомобильных выхлопов от монооксида углерода в выхлопной системе обычно используются каталитические конвертеры, которые за счет каталитических реакций окисляют его до нетоксичного диоксида азота. Однако из-за повышения эффективности современных двигателей, которое сопровождается уменьшением температуры выхлопных газов, катализаторы резко теряют эффективность, в результате чего содержание угарного газа в них повышается.

Для борьбы с этим эффектом химики активно ищут новые типы катализаторов для окисления CO, которые могут работать и при относительно невысоких температурах — в районе 150–200 градусов Цельсия. Например, недавно американские исследователи получили катализатор для окисления угарного газа на отдельных атомах платины, распределенных по поверхности оксида церия. Некоторые материалы позволяют окислять CO с более низкой степенью конверсии и при температурах ниже 100 градусов. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

В Новосибирске создали самую быструю флешку в мире

В Институте физики полупроводников имени А.В. Ржанова Сибирского отделения РАН выяснили, что флеш-память с использованием мультиграфена по быстродействию и времени хранения информации может превосходить аналоги, основанные на других материалах. Об этом сообщается на сайте «Наука в Сибири».

В институте изучили применение мультиграфена (вещества из нескольких слоев графена) во флеш-памяти. Принцип ее действия основан на инжекции (впрыскивании) и хранении электрического заряда в запоминающей среде (мультиграфене). Помимо этого необходимыми компонентами такой флеш-памяти являются туннельный и блокирующий слои. Первый изготавливается из оксида кремния, второй, как правило, из диэлектрика с высоким значением диэлектрической проницаемости.

Эффективность флеш-памяти (время хранения заряда, быстродействие) в свою очередь зависит от величины работы выхода запоминающей среды — энергии, которая тратится на удаление электрона из вещества. Используемый мультиграфен обладает важной особенностью — у него большая работа выхода для электронов, около 5 электронвольт. Из-за этого на границе мультиграфена и оксида кремния величина потенциального барьера увеличена и составляет примерно 4 электронвольт. Именно этот эффект был взят в основу исследования. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Хиральность нанотрубок можно регулировать

Молекулы поверхностно-активного

вещества, адсорбированные на

поверхности одностенной

углеродной нанотрубки

 

При производстве нанотрубок в качестве конечного продукта получается смесь наноструктур с различной хиральностью, т.е. с различными электрическими свойствами. Но для формирования наноустройств необходимо выделять нанотрубки только одной хиральности. При помощи компьютерного моделирования исследователи из США доказали, что поверхностно-активные вещества могли бы помочь выделить нанотрубки с каким-то определенным набором свойств, т.е. с одной определенной хиральностью.

Одностенные углеродные нанотрубки можно представить как листы графена (одноатомного слоя углерода с гексагональным кристаллическим строением), свернутые в трубку диаметром около 1 нм. Относительная ориентация шестигранников, формирующих кристаллическую решетку стенки нанотрубки, и ее пространственной оси определяет такое свойство, как хиральность нанотрубок. В общем случае хиральностью объекта в физике называется отсутствие симметрии относительно зеркального отображения объекта. В случае с нанотрубками хиральность определяет электронные свойства, т.е., в конечном счете, позволяет отнести нанотрубку по своим свойствам к металлам или полупроводникам.

На сегодняшний день разработано множество способов получения нанотрубок. Но большинство из них позволяет выращивать нанотрубки «случайным» образом, т.е. не позволяет контролировать их хиральность на стадии производства. Благодаря высокой площади поверхности и свойствам транспорта электрического заряда одностенные углеродные нанотрубки идеальны для множества практических применений, таких как создание сверх-чувствительных миниатюрных датчиков или транзисторов. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

 

Схематическое изображение процесса уничтожения раковых

клеток при помощи облучения золотых нанотрубок лазерным излучением ближней ИК-области

Согласно последней работе ученых из Великобритании, нанотрубкииз золота  могут использоваться для эффективного фототермального уничтожения раковых клеток. Трубки, являющиеся по сути наночастицами золота с трубчатой структурой, также могут использоваться в качестве инструмента для доставки лекарственных средств или в роли нанозондов для медицинской визуализации пораженных областей с высоким разрешением.

Все живые клетки, в том числе раковые, могут быть уничтожены при помощи нагревания. В то время как некоторые раковые клетки могут быть устойчивы к химиотерапии, все они разрушаются при воздействии тепла, необходимо лишь обеспечить достаточно высокую температуру. Радиочастотная абляция и сфокусированное ультразвуковое излучение высокой интенсивности уже используются для удаления опухолей. В своей последней работе группа ученых из University of Leeds (Великобритания) также обнаружила, что в качестве альтернативы можно использовать фототермальное уничтожение клеток, в рамках которого задействуются золотые нанотрубки, облучаемые лазерным излучением из ближней инфракрасной области. Важно, что опубликованная работа – первый случай, когда поглощение света из ближней ИК-области золотыми наноструктурами применяется в биомедицине.

В опубликованной в журнале Advanced Functional Materials работе ученые отмечают, что им удалось контролировать длину золотых нанотрубок при их производстве. Таким образом, они производили наноструктуры, чьи размеры обеспечивают оптимальное поглощение света в ближней ИК области спектра электромагнитного излучения. Надо отметить, что этот диапазон имеет важное значение для биомедицины, поскольку биологические ткани хорошо поглощают подобное излучение. В результате при помощи одного импульса лазерного луча ученым удалось быстро увеличить температуру в непосредственной близости от нанотрубок (в процессе нагревались и сами нанотрубки), что позволило быстро и достаточно эффективно разрушить раковые клетки. Поскольку излучение из ближнего ИК-диапазона проникает в ткани на несколько сантиметров, при помощи такого теплового эффекта могут удаляться многие виды опухолей. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Исследователи из Массачусетского технологического института (MIT),  IBM и лаборатории реактивного движения  НАСА построили  массив детекторов света на фотонном кристалле, который может эффективно записывать отдельные фотоны. Такие устройства будут важными элементами будущих квантовых технологий, таких как квантовая криптография и оптические квантовые  компьютеры.

«Мы хотели бы создать фотонный квантовый процессор на чипе, а  однофотонные источники и детекторы являются важнейшими компонентами для такой микросхемы,» объясняет член команды Faraz Najafi в Массачусетском технологическом институте.

В то время как классические компьютеры хранят  и обрабатывают  информацию в «битах», которые могут иметь одно из двух состояний («0» или «1»), квантовый компьютер использует способность квантовых частиц  быть в «суперпозиции» двух или более состояний в одно и  то же время. "В то время как единичный  квантовый бит (кубит) может находиться в двух состояниях одновременно, два  кубитов могут  быть в четырех состояниях одновременно, и так далее», поясняет руководитель совместной команды  Dirk Englund  из Массачусетского технологического института. «Более того, число   состояний , которые занимаютcя одновременно в  квантовом компьютере растет экспоненциально с ростом числа кубитов в нем.»

“Обработка информации в квантовых приборах превосходит её в классических компьютерах  в определенных задачах, таких как моделирование процессов квантовой механики и  процессов в природе, взлом криптографических кодов”,  добавляет он. Еще одним важным аспектом  таких квантовых систем является то, что квантовые частицы могут также стать «запутанными». Переплетение позволяет частицам иметь  более тесные отношения, чем  позволяют законы классической механики ,и,  таким образом данные передаются мгновенно между запутанными состояниями частиц — независимо от того, как далеки они друг от друга. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс

Создан симбиоз графена и углеродных нанотрубок

                 Группа американских исследователей создала новый гибридный трехмерный материал, представляющий собой некое объединение графена и углеродных нанотрубок. Материал, имеющий чрезвычайно высокую площадь поверхности на единицу массы (более 2 тысяч квадратных метров на грамм), может быть использован для создания устройств накопления энергии или других наноэлектронных компонент с удивительными характеристиками.

Графен и углеродные нанотрубки обладают многими уникальными электронными и механическими свойствами, такими как высокая подвижность носителей электрического тока, высокая электро- и теплопроводность, прочность на разрыв и большая площадь поверхности, приходящаяся на единицу массы. Объединение двух подобных структур (двумерного графена и одномерных углеродных трубок) позволяет транслировать все эти характеристики для эксплуатации в трех измерениях, в частности, для создания устройств накопления энергии и развития других наноэлектронных технологий. Однако практика показывает, что не так просто соединить эти два материала вместе при помощи ковалентной связи. Графен и углеродные нанотрубки выращиваются на различных подложках. Для углеродных нанотрубок используется оксид алюминия и железа, а для графена – металлические катализаторы (например, никель или медь). Предыдущие попытки объединения этих двух структур приводили к тому, что нанотрубки были физически адсорбированы на поверхности графена, а не присоединены к ней при помощи ковалентной углеродной связи. Таким образом, структуру нельзя было назвать единой. Читать запись полность. »

НАЖМИТЕ КНОПОЧКУ ВАМ НЕ ТЯЖЕЛО А МНЕ ПРИЯТНО

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники
Опубликовать в Яндекс